US 2002/0099954 Al

SENSOR FOR DETECTING AND ELIMINATING
INTER-PROCESS MEMORY BREACHES IN
MULTITASKING OPERATING SYSTEMS

FIELD OF THE INVENTION

[0001] The present invention relates to the field of pro-
tecting and securing data in computerized systems. More
particularly, the invention provides a method and system for
detecting inter-process memory breaches in multitasking
operating systems.

BACKGROUND OF THE INVENTION

[0002] Modern operating systems are actually a modular
collection of building blocks rather than one monolithic
object. This form of architecture enables an Operation
System (OS) manufacturer to build and distribute new
facilities (or new versions for existing facilities) with rela-
tive ease. It also enables third party programmers to add new
capabilities to a basic operating system without accessing its
source code, by means of well-defined extension interfaces.

[0003] In particular, the Input/Output (I/O) architecture of
a conventional operating system is multi-layered, scaleable
and extensible, i.e., each packet of I/O data travels along a
chain of layers, wherein the layers are organized so that
applications that are being executed by the OS at the system
of a user are divided into separate functional components
that interact in some sequential and hierarchical way, with
each layer in the chain usually having an interface only to
the layer above it and the layer below it. Some of the layers
are those provided with the original software package of the
OS, some are updates, others are additional layers not
present in the original software package, and finally, some
are actually built by third party suppliers (including original
parts of the original software package that were subcon-
tracted).

[0004] Operating systems usually make a distinction
between a privileged mode and non-privileged mode regard-
ing the ability of a process to call ‘privileged’ services. The
notion of multi-layered architecture and underlying exten-
sion mechanisms apply to both modes, but the implemen-
tation may differ significantly.

[0005] A Privileged mode (so-called “Kernel-mode”) is
the essential core of any OS, which provides basic services
for other parts of the OS. Typically, the Kernel-mode is the
part of the OS that resides in the memory of the computer at
all times during its operation, and provides basic services. It
is the part of the OS which is closest to the machine level and
may directly activate the hardware of such a computerized
system, or interface with another software layer which
drives a hardware. Due to performance considerations, ker-
nel-mode processes typically share the system’s physical
memory space without an extra mapping of their non-
privileged mode relatives. A kernel-mode process can be
seen as a server to many non-privileged mode processes,
which is vulnerable to possible low-level breaches. A pro-
cess of a non-privileged mode (so-called “user-mode”) can
call system services that are not privileged.

[0006] In particular, user-mode multi-layer extension
mechanisms are quite vulnerable to memory-space breaches.
These enabling mechanisms are relatively well documented,
and a dedicated programmer having access to the interfaces

Jul. 25, 2002

of these extension mechanisms is generally able to imple-
ment them in quite a short time. Some well known books in
the field of general Operating Systems, particularly Win-
dows™ OS provide relevant information regarding this
subject.

[0007] From now on, and unless otherwise stated, the
following text will refer to user-mode.

[0008] The building blocks of standard applications, such
as a word processor, an Internet browser etc., are code
modules, usually divided into program modules and/or into
Shared Code Resources (SCRs). Examples for such SCRs
are the Dynamic Link Library (DLL), which are included in
the Windows OS of Microsoft. Furthermore, each applica-
tion may use several SCRs on the same session. Generally,
SCRs are grouped in stacks, wherein each stack contains
several SCRs, sometimes a dozen or more SCRs are grouped
together in one stack. The SCRs are organized in each stack
in a chain-like manner. Normally, whenever a service from
a specific SCR is requested by a user application, the request
travels along the whole relevant stack, however, the user
application has no clue about the specific SCRs that actually
serve it along the way.

[0009] Moreover, when an extension is needed to one of
the OS services, for example, encrypting certain I/O data
packets, an insertion of an SCR into the relevant stack chain
should do. Of course that SCR has to comply with a given
interface and be good mannered, the least it should do is to
dispatch incoming calls to the next SCR in the chain.

[0010] In a typical case, an extender, which might be, for
example, a specific process, requests from the OS to insert
an SCR into a specific extensible chain. If all goes well, the
SCR is inserted as a new “layer”, and starts receiving
relevant calls as if it was an original part of the stack, and
of the OS. From this point on, until this new SCR is
appropriately removed from the chain, the newly installed
SCR is mapped into the address space of any application that
happen to use that relevant stack.

[0011] Due to resource-economy considerations, a reason-
able multitasking operating system would load just a single
copy of a given SCR into the physical memory, and then
map it to the virtual address space of each process that might
need it. More particularly, each ‘instance’ of the SCR is
mapped to the appropriate process context. Unfortunately,
there is more than one way to share memory between the
SCR’s ‘instances’.

[0012] Combining the aforementioned factors that com-
promise the requirement for separation between memory
spaces of different processes, there is an opportunity for
offenders to abuse the inherent mechanisms of the operating
system. In fact, this provides a possible way for one process
to break into the memory space of another process.

[0013] An offender that has managed to break into the
memory space of another process has a choice of options.
Amongst other threats, the offender may read or manipulate
1/0, it might change the behavior of the invaded application,
or it may send information from one process to another
process.

[0014] One of the most serious aspects of memory-space
breaches is the ability of the offender to take the identity of
the invaded process. This makes life harder for auditing



